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Abstract
Matter is distributed very homogeneously and isotropically on scales larger
than a few hundred Mpc. The measurements of the microwave background
temperature fluctuations show that at recombination the universe was extremely
homogeneous and isotropic (with accuracy ∼10−4) on all scales up to the
present horizon (Spergel et al 2006 Preprint astro-ph/0603449; MacTavish
et al 2005 Preprint astro-ph/0507503). On the other hand, there is a large
scale structure in the observable universe and one of the central issues
of contemporary cosmology is the explanation of the origin of primordial
inhomogeneities, which serve as the seeds for structure formation. Before the
advent of inflationary cosmology the initial perturbations were postulated and
their spectrum was designed to fit observational data. In this way practically
any observation could be ‘explained’, or more accurately described, by
arranging the appropriate initial conditions. In contrast, inflationary cosmology
truly explains the origin of primordial inhomogeneities and predicts their
spectrum (Mukhanov and Chibisov 1981 JETP Lett. 33 532; Mukhanov and
Chibisov 1982 Sov. Phys.—JETP 56 258). Thus it becomes possible to test this
theory by comparing its predictions with observations. According to cosmic
inflation, primordial perturbations originated from quantum fluctuations. These
fluctuations have substantial amplitudes only on scales close to the Planckian
length, but during the inflationary stage they are stretched to galactic scales with
nearly unchanged amplitudes. Thus, inflation links the large-scale structure of
the universe to its microphysics. The resulting spectrum of inhomogeneities is
not very sensitive to the details of any particular inflationary scenario and has
nearly universal shape. This leads to concrete predictions for the spectrum of
cosmic microwave background anisotropies.

PACS number: 98.80.Cq

1. Inflation

Inflation is the stage of accelerated expansion with graceful exit to the decelerating Friedmann
Universe. To describe the stage of cosmic inflation with subsequent graceful exit one usually
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considers the slow-rolling scalar field which imitates the equation of state p ≈ −ε. Instead
of considering the concrete scalar field models we can use, however, the language of ideal
hydrodynamics, which is an adequate phenomenological description of matter on large scales
both before and after inflation. To parametrize the ‘hydrodynamical fluid’ it is natural to
use the scalar variable ϕ and write the most generic action, which leads to the second-order
equation for a scalar variable, in the form

S =
∫

p(X, ϕ)
√−g dx, (1.1)

where p is an arbitrary function of ϕ and X ≡ 1
2 (∂µϕ∂ϕµ). Variation of (1.1) with respect to

the metric gives the energy–momentum tensor, which, for X > 0, can be written in the form
of ‘ideal hydrodynamical fluid’:

T µ
ν = (ε + p)uµuν − pδµ

ν , (1.2)

where the Lagrangian p plays the role of the effective pressure and

ε = 2X
∂p

∂X
− p, uν = ∂νϕ√

2X
. (1.3)

Lagrangian (1.1) can be used to describe the usual hydrodynamical fluid as well as the matter
with the equation of state imitating the cosmological constant. For example for p = X2 we
have ultrarelativistic equation of state p = ε/3. On the other hand if p satisfies the condition
X∂p/∂X � p for some range of X and ϕ, the equation of state is p ≈ −ε and we have
an inflationary solution. All successful simple inflationary scenarios with the scalar field,
e.g. [7, 13], can be described by the action of the form (1.1). Moreover, using conformal
equivalence of the higher derivative gravity to Einstein gravity with an extra scalar field [10]
we can describe inflation in the higher derivative gravity [11, 12] in the same way as in the
theories with the scalar field.

One could consider the Lagrangians with two or more scalar fields. Then the number
of options increases. The most popular model of this type, which has some justification in
particle physics is the so-called hybrid inflation [14]. However, in the case of several scalar
fields the inflation drastically loses its predictive power and therefore I will not consider this
situation here.

Action (1.1) can be used to derive the spectrum of inflationary perturbations in generic
inflationary models entirely in terms of hydrodynamical quantities p and ε, characterizing the
state of the matter during inflation.

There are two ways to realize the condition which leads to inflation, X∂p/∂X � p,
namely, either keeping the kinetic term X small (slow-roll inflation) [7] or taking the nontrivial
dependence of the Lagrangian on X, so that the derivative X∂p/∂X � p even for large X
(k-inflation) [8]. Below we will derive the spectrum of the inflationary perturbations in the
general case for an arbitrary equation of state.

2. Scalar perturbations

2.1. Equations

Let us consider a flat universe filled by matter described by action (1.1). If p depends only on
X, then ε = ε(X), and in many cases equation (1.3) can be rearranged to give p = p(ε), the
equation of state for an isentropic fluid. In the general case, p = p(X, ϕ), the pressure cannot
be expressed only in terms of ε since X and ϕ are independent. However, even in this case, the
hydrodynamical analogy is still useful. For a canonical scalar field we have p = X − V (ϕ)

and, correspondingly, ε = X + V.
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To derive the equations for scalar perturbations we will follow [15] and work in the
conformal-Newtonian coordinate system, where the metric takes the form

ds2 = a2(η)[(1 + 2�) dη2 − (1 − 2�)δik dxi dxk]. (2.1)

The state of a flat, homogeneous universe is characterized completely by the scale factor
a(η) and the homogeneous field ϕ0(η), which satisfy the familiar equations

H2 = 8π

3
a2ε, (2.2)

ε′ = ε,XX′
0 + ε,ϕϕ′

0 = −3H(ε + p), (2.3)

where H ≡ a′/a, the prime denotes the derivative with respect to conformal time η,X0 =
ϕ′2

0 /(2a2) and we have set G = 1. To linear order the perturbations of the energy–momentum
tensor (1.2) are:

δT 0
0 = δε = ε + p

c2
s

((
δϕ

ϕ′
0

)′
+ H

δϕ

ϕ′
0

− �

)
− 3H(ε + p)

δϕ

ϕ′
0

, (2.4)

where

c2
s ≡ p,X

ε,X

= ε + p

2Xε,X

, (2.5)

and

δT 0
i = (ε + p)u0δui = (ε + p)g00 ϕ′

0√
2X0

δϕ,i√
2X0

= (ε + p)

(
δϕ

ϕ′
0

)
,i

. (2.6)

The 0 − 0 and 0 − i components of the Einstein equations then become


� − 3H(� ′ + H�) = 4πa2(ε + p)

[
1

c2
s

((
δϕ

ϕ′
0

)′
+ H

δϕ

ϕ′
0

− �

)
− 3H

δϕ

ϕ′
0

]
, (2.7)

(� ′ + H�) = 4πa2(ε + p)

(
δϕ

ϕ′
0

)
. (2.8)

Since δT i
k = 0 for i �= k, we have � = �; the two equations above are sufficient to determine

the gravitational potential and the perturbation of the scalar field. It is useful, however, to
recast them in a slightly different, more convenient form. Using equation (2.8) to express �

in terms of � ′ and δϕ and substituting the result into (2.7), we obtain


� = 4πa2(ε + p)

c2
sH

(
H

δϕ

ϕ′
0

+ �

)′
, (2.9)

where the background equations (2.2) and (2.3) have also been used. Because � = �,

equation (2.8) can be rewritten as(
a2 �

H

)′
= 4πa4(ε + p)

H2

(
H

δϕ

ϕ′
0

+ �

)
. (2.10)

Finally, in terms of the new variables

u ≡ �

4π(ε + p)1/2
, v ≡ √

ε,Xa

(
δϕ +

ϕ′
0

H
�

)
, (2.11)

(2.9) and (2.10) take the form

cs
u = z

(
v

z

)′
, csv = θ

(u

θ

)′
(2.12)
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where

z ≡ a2(ε + p)1/2

csH
, θ ≡ 1

csz
=

√
8π

3

1

a

(
1 +

p

ε

)−1/2
. (2.13)

2.2. Classical solutions

Substituting v from the second equation in (2.12) into the first gives a closed form second
order differential equation for u:

u′′ − c2
s 
u − θ ′′

θ
u = 0. (2.14)

Considering a short-wavelength plane wave perturbation with a wavenumber k
(
c2
s k

2 �
|θ ′′/θ |), we obtain in the WKB approximation

u 	 C√
cs

exp

(
±ik

∫
cs dη

)
, (2.15)

where C is a constant of integration. The long-wavelength solution, valid for c2
s k

2 � |θ ′′/θ |,
is

u = C1θ + C2θ

∫
η0

dη

θ2
+ O((kη)2). (2.16)

Given u, the gravitational potential can be inferred from the definition in (2.11):

� = � = 4π(ε + p)1/2u (2.17)

and a perturbation of the scalar field is calculated using (2.8):

δϕ = ϕ′
0

(a�)′

4πa3(ε + p)
= ϕ̇0

(�̇ + H�)

4π(ε + p)
. (2.18)

Substituting (2.15) and (2.16) into equations (2.17) and (2.18), we have

� 	 4πCϕ̇0

√
p,X

cs

exp

(
±ik

∫
cs

a
dt

)
, (2.19)

δϕ 	 C

√
1

csp,X

(
±ics

k

a
+ H + · · ·

)
exp

(
±ik

∫
cs

a
dt

)
, (2.20)

for a short-wavelength perturbation and

� 	 A
d

dt

(
1

a

∫
a dt

)
= A

(
1 − H

a

∫
a dt

)
, (2.21)

δϕ 	 Aϕ̇0

(
1

a

∫
a dt

)
, (2.22)

where A is a constant of integration, in the long-wavelength limit respectively.
Let us first find how a perturbation behaves during inflation. It follows from (2.19) and

(2.20) that in the short-wavelength regime both metric and scalar field perturbations oscillate.
The amplitude of the metric perturbation is proportional to ϕ̇0 and it grows only slightly
towards the end of inflation, while the amplitude of scalar field perturbation decays in inverse
proportion to the scale factor. After a perturbation enters the long-wavelength regime it is
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described by formulae (2.21) and (2.22). These formulae are simplified during slow-roll.
Integrating by parts and neglecting the decaying mode we find that to leading order

� 	 A(H−1)
• = −A

Ḣ

H 2
, δϕ 	 A

ϕ̇0

H
. (2.23)

Result (2.23) is applicable only during inflation. After the slow-roll stage is over we must
use formulae (2.21) and (2.22) directly. Inflation is usually followed by an oscillatory stage
where the scale factor grows as some power of time, a ∝ tp, with p depending on the scalar
field potential (for the quadratic potential p = 2/3 and for the quartic potential p = 1/2).
Neglecting the decaying mode we obtain from (2.21) and (2.22)

� 	 A

p + 1
, δϕ 	 Atϕ̇0

p + 1
, (2.24)

that is, the amplitude of the gravitational potential freezes out after inflation.
The scalar field finally converts its energy into ultra-relativistic matter corresponding to

p = 1/2. This influences the perturbations only via the change of the effective equation of
state and the resulting amplitude is

� 	 2
3A. (2.25)

Using (2.23), we can express A in terms of δϕ, ϕ̇0 and H at the moment of sound horizon
crossing, when csk ∼ Ha. For those perturbations which leave the horizon during inflation
the final result is

� 	 2

3

(
H

δϕ

ϕ̇0

)
csk∼Ha

. (2.26)

Note that formula (2.26) can also be applied to calculate the perturbations in theories with a
non-minimal kinetic term.

Starting with quantum fluctuations, the resulting amplitude of perturbations in the post-
inflationary epoch can be fixed if we know δϕ at horizon crossing. The natural question
arises: which variable plays the role of a canonical quantization variable? To derive the exact
numerical coefficients we need a rigorous quantum theory.

2.3. Action and quantization

In order to construct a canonical quantization variable and properly normalize the amplitude
of quantum fluctuations, we need the action for the cosmological perturbations. To obtain it
one expands the action for the gravitational and scalar fields to second order in perturbations.
After use of the constraints, the result is reduced to an expression containing only the physical
degrees of freedom (see, for example, [5]). The steps are very cumbersome but fortunately
they can be avoided because the action for the perturbations can be unambiguously inferred
directly from the equations of motion (2.12 ) up to an overall time-independent factor. This
factor can then be fixed by calculating the action in some simple limiting case. The first order
action reproducing the equations of motion (2.12) is

S =
∫ [(

v

z

)′
Ô

(u

θ

)
− 1

2
c2
s (
u) Ôu +

1

2
c2
s vÔv

]
dη d3x, (2.27)

where Ô ≡ Ô(
) is a time-independent operator to be determined. Using the first equation
in (2.12) to express u in terms of (v/z)′ , we obtain

S = 1

2

∫ [
z2

(
v

z

)′
Ô




(
v

z

)′
+ c2

s vÔv

]
dη d3x. (2.28)
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Comparing action (2.28) in the limiting case ϕ̇0/H → 0 to the action for a free scalar
field in the de Sitter universe, we obtain Ô = 
 and (2.28) becomes

S ≡
∫

L dη d3x = 1

2

∫ (
v′2 + c2

s v
v +
z′′

z
v2

)
dη d3x, (2.29)

after we drop the total derivative terms. Varying the action with respect to v we obtain

v′′ − c2
s 
v − z′′

z
v = 0. (2.30)

Note that this equation also follows from the second equation in (2.12 ) after substituting u in
terms of v.

The quantization of cosmological perturbations with action (2.29) is thus formally
equivalent to the quantization of a ‘free scalar field’ v with time-dependent ‘mass’ m2 = −z′′/z
in Minkowski space. The time dependence of the ‘mass’ is due to the interaction of the
perturbations with the homogeneous expanding background. The energy of the perturbations
is not conserved and they can be excited by borrowing energy from the Hubble expansion.
The canonical quantization variable

v = √
ε,Xa

(
δϕ +

ϕ′
0

H
�

)
(2.31)

is a gauge-invariant combination of the scalar field and metric perturbations. The operator v̂

obeys equation (2.30) and its general solution can be written as

v̂(η, x) = 1√
2

∫ [
v∗

k(η) eikxâ−
k + vk(η) e−ikxâ+

k

] d3k

(2π)3/2
, (2.32)

where â+
k and â−

k are the creation and annihilation operators which satisfy the standard
commutation relations. The temporal mode functions vk(η) obey the equation

v′′
k + ω2

k(η)vk = 0, ω2
k(η) ≡ c2

s k
2 − z′′/z. (2.33)

with initial conditions

vk(ηi) = 1√
ωk(ηi)

, v′
k(ηi) = i

√
ωk(ηi). (2.34)

Note that the above conditions make sense only for modes with c2
s k

2 > (z′′/z)i for which
ω2

k(ηi) > 0.

The next step in quantization is to define the ‘vacuum’ state |0〉 as the state annihilated by
operators â−

k :

â−
k |0〉 = 0. (2.35)

We further assume that a complete set of independent states in the corresponding Hilbert space
can be obtained by acting with the products of creation operators on the vacuum state |0〉.
If the ωk do not depend on time, then the vector |0〉 corresponds to the familiar Minkowski
vacuum. Assuming cs changes adiabatically, we find that modes with c2

s k
2 � (z′′/z) remain

unexcited and minimal fluctuations are well-defined. On the other hand, for modes with
c2
s k

2 < (z′′/z)i we have ω2
k(ηi) < 0, and the initial minimal fluctuations on corresponding

scales cannot be unambiguously determined. These scales exceed the Hubble scale at the
beginning of inflation and are subsequently stretched to huge unobservable scales; therefore
the question of initial fluctuations here is fortunately moot. The inhomogeneities responsible
for the observable structure originate from quantum fluctuations on scales where the minimal
fluctuations are unambiguously defined.
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2.4. Spectrum

Our final task is to calculate the correlation function, or equivalently, the power spectrum of
the gravitational potential. Taking into account (2.11), we have the following expansion for
the operator �̂:

�̂(η, x) = 4π(ε + p)1/2

√
2

∫ [
u∗

k(η) eikxâ−
k + uk(η) e−ikxâ+

k

] d3k

(2π)3/2
, (2.36)

where the mode functions uk(η) obey (2.14) and are related to the mode functions vk(η) via
(2.12). For the initial vacuum state |0〉 the correlation function at η > ηi is

〈0|�̂(η, x)�̂(η, y)|0〉 =
∫

4(ε + p)|uk|2k3 sin kr

kr

dk

k
, (2.37)

where r ≡ |x − y|. According to the definition of the power spectrum, we have

δ2
�(k, η) = 4(ε + p)|uk(η)|2k3. (2.38)

Given vk(ηi) and v′
k(ηi), the initial conditions for uk can be inferred from equations (2.12).

Let us consider a short-wavelength perturbation with c2
s k

2 � (z′′/z)i for which ωk(ηi) 	 csk.

In this case the initial conditions (2.34) can be rewritten in terms of uk as

uk(ηi) 	 − i√
csk3/2

, u′
k(ηi) 	

√
cs

k1/2
, (2.39)

where we have neglected higher order terms, which are suppressed by powers of (cskηi)
−1 �

1. The corresponding short-wavelength WKB solution, valid for c2
s k

2 � |θ ′′/θ |, is

uk(η) 	 − i√
csk3/2

exp

(
ik

∫ η

ηi

cs dη̃

)
. (2.40)

During inflation the ratio |θ ′′/θ | can be estimated roughly as η−2|Ḣ /H 2|. Because |Ḣ /H 2| �
1, formula (2.40) is still applicable within the short time interval

1

csk
> |η| >

1

k
|Ḣ /H 2|1/2 (2.41)

after the sound horizon crossing. At this time the argument in the exponent is almost constant
and uk freezes out. After a perturbation enters the long-wavelength regime the time evolution
of the gravitational potential is described by (2.21), and hence

uk(η) ≡ �

4π(ε + p)1/2
= Ak

4π(ε + p)1/2

(
1 − H

a

∫
a dt

)
. (2.42)

During inflation this expression simplifies to

uk(η) 	 − Ak

4π(ε + p)1/2

(
Ḣ

H 2

)
= Ak

(ε + p)1/2

H 2
. (2.43)

Taking into account that within the time interval (2.41) the ratio

(ε + p)1/2

H 2

is almost constant and comparing solutions (2.40) and (2.43), we obtain

Ak 	 − i

k3/2

(
H 2

√
cs(ε + p)1/2

)
csk	Ha

. (2.44)

Substituting (2.40) into (2.38) gives the scale-independent power spectrum

δ2
�(k, t) 	 4(ε + p)

cs

(2.45)
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for short-wavelength perturbations with k > Ha(t)/cs. Using (2.42) with Ak as given in
(2.44), we obtain

δ2
�(k, t) 	 16

9

(
ε

cs(1 + p/ε)

)
csk	Ha

(
1 − H

a

∫
a dt

)2

(2.46)

for long-wavelength perturbations with Ha(t)/cs > k > Hai/cs , where ai ≡ a(ti).

It follows from (2.46) that in the post-inflationary, radiation-dominated epoch the resulting
power spectrum is

δ2
� 	 64

81

(
ε

cs(1 + p/ε)

)
csk	Ha

. (2.47)

This formula is applicable only on scales corresponding to
(
c−1
s Ha

)
f

> k >
(
c−1
s Ha

)
i
.

This range surely encompasses the observable universe. The supercurvature perturbations are
frozen during the radiation-dominated stage and they survive unchanged until recombination.
Only for those scales which reenter the horizon does the evolution proceed in a nontrivial way.

In particular case of an inflationary model with potential V = (λ/n)ϕn we obtain

δ2
� 	 128

27

n
n
2 −2

(4π)n/2
λ[ln(λph/λγ )]

n+2
2 , (2.48)

where λγ is the typical wavelength of the background radiation.

2.5. Spectral tilt

It follows from (2.47) that the amplitude of the metric perturbation on a given comoving scale
is determined by the energy density and by deviation of the equation of state from the vacuum
equation of state at the time of horizon crossing. On galactic scales, δ2

� is of order 10−10 and
(1 + p/ε) can be estimated as ∼10−2; therefore we conclude that ε ∼ 10−12 of the Planckian
density at this time. This is a rather robust and generic estimate for inflation during the last
seventy e-folds. Only if cs � 1, for instance in k-inflation, can we avoid this conclusion.

Since inflation must have a graceful exit, the energy density and the equation of state
slowly change during inflation. As a consequence the amplitude of the perturbations generated
depends slightly on lengthscale. The energy density always decreases and it is natural to expect
that the deviation of the equation of state from that for the vacuum should increase towards the
end of inflation. It follows then from (2.47) that the amplitude of those perturbations which
crossed the horizon earlier must be larger than the amplitude of perturbations which crossed
later. Within a narrow range of scales, one can always approximate the spectrum by the
power-law, δ2

�(k) ∝ knS−1, and thus characterize it by the spectral index nS. A flat spectrum
corresponds to nS = 1.

The expression for the spectral index follows from (2.47):

nS − 1 ≡ d ln δ2
�

d ln k
	 −3

(
1 +

p

ε

)
− 1

H

(
ln

(
1 +

p

ε

))•

− (ln cs)
•

H
, (2.49)

where the quantities on the right-hand side must be calculated at the time of horizon crossing.
In deriving this formula we have taken into account that d ln k 	 d ln ak. This relation follows
from the condition determining horizon crossing, csk 	 Hak, if we neglect the change in
cs and H. All terms on the right-hand side of (2.49) are negative for a generic inflationary
scenario. Therefore, inflation does not predict a flat spectrum, as is quite often mistakenly
stated. Instead, it predicts a red-tilted spectrum: nS < 1 so that the amplitude grows slightly
towards the larger scales. The physical reason for this tilt is the necessity of a smooth graceful
exit. To obtain an estimate for the tilt we note that the galactic scales cross the horizon around
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50 to 60 e-folds before the end of inflation. At this time (1 + p/ε) is larger than 10−2. The
second term in (2.49) is about the same order of magnitude and the spectral index can thus
be estimated as nS 	 0.96. The concrete value of nS depends on a particular inflationary
scenario. Even without knowing this scenario, however, one could expect that nS � 0.97. By
inspection of the variety of scenarios, one infers that it is rather difficult to get a very large
deviation from the flat spectrum and that it is likely nS > 0.92.

Considering chaotic inflation in a model with potential V we find

nS − 1 	 − 3

8π

(
V,ϕ

V

)2

+
1

4π

V,ϕϕ

V
. (2.50)

and in particular for the power-law potential, V ∝ ϕn,

nS − 1 	 − n(n + 2)

8πϕ2
k	Ha

	 −n + 2

2N
, (2.51)

where N is the number of e-folds before the end of inflation when the corresponding
perturbation crosses the horizon. In the case of a massive scalar field, n = 2, and nS 	 0.96
on galactic scales for which N 	 50. For the quartic potential n = 4 and nS 	 0.94.

3. Gravitational waves

In a similar manner to scalar perturbations, long-wavelength gravitational waves are also
generated in inflation [16]. In this case the calculations are not very different from those
made for the scalar perturbations and are in fact much easy. First we need the action for the
gravitational waves, described by transverse, traceless part of metric perturbations hik, is (see,
for example, [5]):

S = 1

64π

∫
a2(hi′

j h
j ′
i − hi

j,lh
j,l

i

)
dη d3x, (3.1)

where the spatial indices are raised and lowered with the help of the unit tensor δik. Substituting

hi
j (x, η) =

∫
hk(η)ei

j (k) eikx d3k

(2π)3/2
, (3.2)

where ei
j (k) is the polarization tensor, into (3.1), we obtain

S = 1

64π

∫
a2ei

j e
j

i (h
′
kh

′
−k − k2hkh−k) dη d3k. (3.3)

Rewritten in terms of the new variable

vk =
√

ei
j e

j

i

32π
ahk, (3.4)

the action becomes

S = 1

2

∫ (
v′

kv
′
−k −

(
k2 − a′′

a

)
vkv−k

)
dη d3k. (3.5)

It describes a real scalar field in terms of its Fourier components. The resulting equations of
motion are

v′′
k + ω2

k(η)vk = 0, ω2
k(η) ≡ k2 − a′′/a. (3.6)

There is no need to repeat the quantization procedure for this case. Taking into account (3.4)
and (3.2), we immediately find the correlation function

〈0|hi
j (η, x)h

j

i (η, y)|0〉 = 8

πa2

∫
|vk|2k3 sin kr

kr

dk

k
, (3.7)
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where vk is the solution of equation (3.6) with initial conditions

vk(ηi) = 1√
ωk

, v′
k(ηi) = i

√
ωk. (3.8)

These initial conditions make sense only if ωk > 0, that is, for gravitational waves with
k2 > (a′′/a)ηi

. The power spectrum, characterizing the strength of a gravitational wave with
comoving wavenumber k, is correspondingly

δ2
h(k, η) = 8|vk|2k3

πa2
. (3.9)

3.1. Inflation

In contrast to scalar perturbations, the deviation of the equation of state from the vacuum
equation of state is not so crucial to the evolution of gravitational waves. Therefore, we first
consider a pure de Sitter universe where a = −(H�η)−1. In this case equation (3.6) simplifies
to

v′′
k +

(
k2 − 2

η2

)
vk = 0. (3.10)

Let us consider gravitational waves with k|ηi | � 1 for which ωk 	 k. Taking into account the
initial conditions in (3.8), the solution of this equation becomes

vk(η) = 1√
k

(
1 +

i

kη

)
exp(ik(η − ηi)). (3.11)

and hence

δ2
h = 8H 2

�

π
[1 + (kη)2] = 8H 2

�

π

[
1 +

(
kph

H�

)2
]

, (3.12)

where kph ≡ k/a is the physical wavelength. This formula is applicable only for kph �
H�(η/ηi). The long-wavelength gravitational waves with H−1

� (ηi/η) > λph > H−1
� have a

flat spectrum with amplitude proportional to H�.

The above consideration refers to a pure de Sitter universe where H� is exactly constant.
In realistic inflationary models the Hubble constant slowly changes with time. Recalling that
the non-decaying mode of a gravitational wave is frozen on supercurvature scales, we obtain

δ2
h 	 8H 2

k	Ha

π
= 64

3
εk	Ha. (3.13)

The tensor spectral index is then equal to

nT ≡ d ln δ2
h

d ln k
	 −3

(
1 +

p

ε

)
k	Ha

, (3.14)

and hence the spectrum of the gravitational waves is also slightly tilted to the red. (Note
that the tensor and scalar spectral indices are defined differently—see equation (2.49).) The
ratio of tensor to scalar power spectrum amplitudes on supercurvature scales during the post-
inflationary, radiation-dominated epoch is

δ2
h

δ2
�

	 27
[
cs

(
1 +

p

ε

)]
k	Ha

. (3.15)

For a canonical scalar field (cs = 1), this ratio is generically about 20 to 30%. However, in
k-inflation, where cs � 1, it can be strongly suppressed. Thus, at least in principle, k-inflation
is phenomenologically distinguishable from inflation based on a scalar field potential.
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4. Inflation as a theory with predictive power

Assuming a stage of cosmic acceleration—inflation—we are able to make robust predictions
even in the absence of the actual inflationary scenario. The most important among them are:

(i) the flatness of the universe;
(ii) Gaussian scalar metric perturbations with a slightly red-tilted spectrum;

(iii) long-wavelength gravitational waves.

The condition of flatness is not as ‘natural’ as it might appear at first glance. We recall that
�0 = 1 was strongly disfavoured by observations not so long ago. If gravity were always an
attractive force, it is absolutely unclear why the current value of �0 could not be, for instance,
0.01 or 0.2. Only inflation gives a natural justification for �0 = 1. The deuterium abundance
clearly indicates that baryons cannot contribute more than a few per cent to the critical energy
density. Therefore, inflation also predicts the existence of a dark component. It can be dark
matter, dark energy or the combination of the two. In the absence of the actual inflationary
scenario, we cannot make any prediction about the composition of the dark component. In
spite of the tremendous progress made recently, we are still far from understanding the true
nature of dark matter and dark energy. The current data on CMB fluctuations favour the
critical density and, combined with the results from high-redshift supernovae, make it almost
impossible to doubt the existence of dark matter and dark energy.

The predicted spectrum for the scalar perturbations is also in good agreement with the
current data. However, the accuracy of the observations is not yet sufficient to determine a
small spectral tilt. The deviation of the spectrum from flat is an inevitable consequence of
simple inflation and therefore it is extremely important to detect it. The amplitude of the
power spectrum is a free parameter of the theory.

The production of a significant amount of long-wavelength gravitational waves is another
generic prediction of a broad class of simple inflationary scenarios. While their detection
would strongly support inflation, the absence of gravitational waves would not allow us to
exclude simple inflation since their production can be avoided in k-inflation.

Since we do not know which concrete scenario was realized in nature, the question of the
robustness of the predictions of inflation is of particular importance. Simple inflation does not
leave much room for ambiguities. However, it is clear that by introducing extra parameters and
by fine-tuning, one can spoil practically any prediction of the theory. For example, with the
help of a second inflationary stage, we could avoid the flatness constraint [17]. Similarly, by
involving two or more scalar fields, one can obtain practically any spectrum of cosmological
perturbations and induce nongaussianity [18–20]. In these cases inflation loses its predictive
power and becomes not so attractive. Having said this, the ‘price to performance’ ratio for
these models seems too high to consider them realistic descriptions of nature. Therefore, only
observations confirming the robust predictions of inflation can assure us that we are on the
right track in understanding our universe. Otherwise they would simply open the door for
speculations.
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